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Abstract
We propose a context-aware framework for turning raw predictive signals into stock-level
alphas that identify and exploit cross-sectional heterogeneity. A panel regression decom-
poses the signal’s slope, its local information coefficient (IC), into additive contributions
from economically motivated, potentially overlapping groups.

We estimate group-level IC components in a panel regression with generalized Ridge
(empirical-Bayes) shrinkage. The shrinkage pulls the global intercept toward the pooled
IC, penalizes imprecise local effects in proportion to their estimated covariance, and leaves
time-varying fixed effects unpenalized so that each group is properly centered cross-
sectionally.

After estimation we can solve a covariance-weighted quadratic program that moves
the coefficients statistically as little as necessary to ensure that every stock’s implied IC is
non-negative, reflecting the economic prior that the signal’s direction should not flip.

Multiplying the stock-specific ICs by the raw signal values produces group-aware,
contextual alphas that amplify the signal where evidence is strong and mute it where it is
weak. These alphas can be used in portfolio construction or can be added to a fundamental
multi-factor risk model to derive orthogonalized factor exposures.

The procedure generalises seamlessly to many signals, each with its own contextual
hierarchy, and accommodates overlapping group definitions without proliferating thou-
sands of dummy-interaction factors.
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1 Introduction
A core challenge in quantitative investing is measuring and improving
the predictive performance of trading signals. A common approach esti-
mates the average signal strength, typically measured by the information
coefficient (IC), across the full investable universe. This assumes uniform
signal effectiveness across all stocks, despite substantial evidence that even
well-established signals, such as short-term reversal or post-earnings drift,
perform differently depending on sector, industry, firm size, and proximity
to corporate events.

I introduce a contextual alpha framework to address this heterogeneity.
The proposed framework allows the information coefficient (IC) of a signal
to vary systematically across pre-defined stock groups. By representing
ICs as additive functions of group-level categorical features, such as sector,
industry, size decile, and event time, we model how predictive strength
depends on the economic and informational environment surrounding each
stock. This approach is intuitive, data-driven, and practically useful for
refining signals and improving portfolio performance.

Our main tool is a group-structured regression in which the slope of
the signal varies by group membership. The slope estimates correspond to
local ICs, rank correlations between the signal and future returns, within
each subgroup. We can estimate this model using regularized regression,
which balances flexibility with estimation stability by shrinking weak or
noisy group effects toward zero.

To improve interpretability and enforce economic discipline, we can post-
process the estimated group ICs to ensure they are non-negative across
all observed groups. This adjustment is posed as a constrained quadratic
optimization problem that balances statistical precision with prior beliefs.

The estimated group-specific ICs are then used to compute expected
returns, which serve as inputs to portfolio construction. This yields group-
aware return forecasts that allocate more weight to signal components with
higher empirical support, while de-emphasizing groups where the signal is
weak or unreliable. The resulting portfolios are interpretable, economically
consistent, and empirically robust.

The proposed framework accommodates overlapping group structures
and extends naturally to multi-signal settings. It provides an interpretable
decomposition of signal performance, allowing managers to diagnose, refine,
and implement signals with greater precision.

The focus of improving a single signal with conditioning information
and machine learning methods differs from the more common idea of using
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2 Contextual Alpha: Emphasizing Forecasts Where They Work Best

machine learning methods to combine a large number of predefined signals.
See Gu, Kelly, and Xiu (2020), Chen, Pelger, and Zhu (2024), or Li, Rossi,
Yan, and Zheng (2025), for example. Müller and Schmickler (2025) follow
an intermediate approach by investigating all pairwise interactions between
signal candidates. When combining multiple signals, it is possible to in-
terpret some of the signals as conditioning information. But the forecast
does not separate signals from conditioning information. A possible excep-
tion is macroeconomic data that is generally interpreted as conditioning
information for the signals.

Howard (2024) investigates separate nonlinear factor models across 3 size
groups and concludes that such models outperform a single, homogenous
model. The nonlinearity in the factor models may condition some signals on
supplied characteristics other than size. Unfortunately, such conditioning
is hidden inside the models. Also, there is no provision of shrinkage,
which becomes important as the number of groups grows, or allowance for
overlapping groups.

The remainder of the paper proceeds as follows: Section 2 presents
the group-structured regression and interprets its coefficients as local ICs.
Section 3 discusses estimation and regularization. Section 4 derives expected
returns from the estimated ICs and explains how to use them in portfolio
construction. Section 5 discusses how to use contextual alphas in a multi-
factor risk model and section 6 concludes.

2 Group-Structured Regressions for ICs
In this framework, we aim to quantify how the predictive effectiveness
of a trading signal varies across groups of stocks defined by categorical
characteristics such as sector, industry, size decile, and event time (e.g.,
proximity to earnings announcements). Based on empirical findings, we can
amplify the signal where it works best and mute the signal where it works
least.

This is a form of tuning for individual signals that permits more flex-
ibility than standard signal constructions while encouraging parsimony.
To improve the odds that the additional flexibility is useful, we choose
specific stock characteristics that may affect signal efficacy. Because we
tune individual signals, these characteristics may vary across signals. This
differs from Freyberger, Neuhierl, and Weber (2020), for example, who fit
univariate nonparametric functions to signals, without conditioning on stock
characteristics, thereby treating all firms homogeneously.
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We start with standard ingredients for predictive regressions. Let ri,t+1

denote the within-industry rank of future returns for stock i at time t + 1,
and let si,t denote the within-industry rank of the current signal value for
the same stock on a preceding date. For returns and signals, we center and
standardize the ranks, so that they have mean zero and standard deviation
of one within each group.

The mainstream approach is to model the return rank across the entire
investable universe as a single linear function of the signal

ri,t+1 = βsi,t + ϵi,t. (1)

If the ranks of returns and signals are centered around zero, the intercept
in this regression is equal to zero. Due to the centered and standardized
ranking of the returns and signals, we can interpret β as the rank correlation
between future returns and current signals. In stock return prediction, we
commonly refer to this rank correlation as the information coefficient.

Following Fama and MacBeth (1973), it is common to run a sequence
of cross-sectional regressions and then average betas over time. Running
a panel regression with time-invariant betas essentially reproduces this
average beta. In order to accommodate a substantial number of parameters
that are meant to be stable over time, I will focus on panel regressions.

The signals si,t can be Fama and French (1992) size or value factors,
Jegadeesh and Titman (1993) momentum factors, or any of the large number
of equity factors listed in Hou, Xue, and Zhang (2018), for example. Many
proprietary signals appear to take this form as well. Of course, this structure
is not confined to equity investing, even though it seems most prominent
there.

2.1 Group-Structured Regression

A natural generalization models the return rank as a linear function of the
signal, where the IC varies additively across groups

ri,t+1 =
(

β0 + ∑
g ̸=g0

βsec
g Dsec

ig + ∑
h ̸=hg(i)

βind
h Dind

ih

+ ∑
d ̸=d0

βsize
d Dsize

id + ∑
e ̸=e0

βevent
e Devent

ie

)
si,t + εi,t. (2)

Here

• β0 captures the baseline effectiveness of the signal across the universe.
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• Dsec
ig is a dummy equal to 1 if stock i belongs to sector g; one sector

(indexed by g0) is omitted for identifiability.
• Dind

ih is a dummy for industry h within sector g(i); one industry is
omitted in each sector.

• Dsize
id is a dummy for size group d, omitting one reference group (e.g.,

the largest stocks).
• Devent

ie indicates event-time classification (e.g., pre- or post-earnings),
omitting a reference group such as “normal” periods.

These dummy categories illustrate the kinds of structures we can model.
Although they seem economically reasonable, they are not meant to be the
best groupings. Different signals may benefit from different groupings. This
signal-specific modeling of groups is a potential benefit of this approach
compared to using the same groups for all signals.

The dummy variables provide conditioning information for the signal
but we assume that the group information does not have predictive value
on its own.

This formulation ensures identifiability: each group-specific coefficient
βj is interpreted as a deviation from its respective reference group. For
example, βsize

1 measures the difference in signal effectiveness for stocks in
size group 1 relative to the omitted group d0.

This is a richly parameterized functional form that allows different ICs
for each labeled group but reduces the potential number of parameters by
not interacting the groups with each other.1

Especially in the context of noisy return predictions, the additional flexi-
bility and parameters of this approach raise concerns about estimation noise.
To balance flexibility with a reduction of noise, we can apply regularization
to the coefficients. Regularization shrinks noisy or weak deviations toward
zero, effectively collapsing the model to a sparse structure where the signal
is assumed equally effective across many groups. In an extreme case, only
β0 remains, corresponding to a uniform signal effect.

Because both the dependent variable ri,t+1 and the signal si,t are within-
industry ranks, the slope coefficients can be interpreted as Spearman rank
correlations, or ICs. The baseline β0 reflects the signal’s effectiveness in
the reference group, and each group-specific coefficient (e.g., βsec

g ) captures

deviations from that baseline. The sum β0 + β
j
g gives the effective IC for

group g.

1Mechanically, adding interactive terms would be a straightforward extension of this
framework. But it quickly introduces a very large number of parameters. I do not pursue this
analysis here.
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Although the model no longer yields a single global IC, it enables a
granular decomposition across sectors, industries, and other dimensions. A
weighted average of group-level slopes still approximates the overall IC

β̂pooled =
∑g ∑i∈g ri,t+1si,t

∑g ∑i∈g s2
i,t

= ∑
g

(
Vg

∑g Vg

)
β̂g, (3)

where Vg = ∑i∈g s2
i,t is the signal variance in group g. Because we standard-

ize signals and returns, signal variances are equal across groups and the
pooled estimate simplifies to the weighted average of the group-specific
betas

β̂pooled = ∑
g

(ng

N

)
β̂g. (4)

In this structure, we modulate the strength of signal across groups,
depending on the signal’s effectiveness in the groups. The signal can be
larger in some groups than in others. In most portfolio constructions, this
will create larger gross exposures in the groups with larger signals. We
maintain the linear relation between returns and signal but allow the slope
coefficient to vary across groups. Hanauer, Soebhag, Stam, and Hoogteijling
(2025) investigate separate nonlinear functions linking returns and signals in
each sector but conclude that a common function across all sectors provides
better out-of-sample predictions.

2.2 Time-Varying Fixed Effects
The regression models in equation (1) and equation (2) have zero intercepts
when returns and signals are centered within each group. In equation (2)
that condition may not hold for all groups. To account for potential non-zero
means in signal values or returns within some groups, we can add fixed
effects for each of these groups. To properly center the groups each period,
we have to introduce separate group dummies for each period. This en-
sures that each group is properly centered in each cross-section, preventing
spurious correlations from driving estimates of signal effectiveness.

The original regression model augmented with time-varying group dum-
mies is

ri,t+1 =
(

β0 + ∑
g ̸=g0

βsec
g Dsec

ig + ∑
h ̸=hg(i)

βind
h Dind

ih

+ ∑
d ̸=d0

βsize
d Dsize

id + ∑
e ̸=e0

βevent
e Devent

ie

)
sit
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+ ∑
t

∑
d

γsize
d,t Dsize

id,t + ∑
t

∑
e

γevent
e,t Devent

ie,t + εit. (5)

Here, the slope coefficients β are time-invariant and measure how signal
effectiveness varies across group memberships. The intercept terms γd,t,
γe,t, are time-varying fixed effects that control for non-zero group means in
each period. The regressions intentionally omit time-varying fixed effects
for sectors and industries under the assumption that the signals and returns
are centered within sectors and industries. When that is not the case, we
should include dummies for these groups as well.

We know that these fixed effects are zero for groups where we have
centered the signals and returns and we can exclude them there. In our
example we have assumed that signals and returns are centered within each
industry and therefore within each sector. Hence, we can exclude the fixed
effects γg and γh for sector and industries, respectively.

By separating intercepts from slopes, the model cleanly decomposes
average group-level differences in returns (via γj), and group-varying signal
effectiveness (via βj). This separation ensures that the estimated ICs βj

reflect true differences in signal performance, not artifacts of group-level
return shifts or uncentered signal distributions.

This is particularly relevant when the group means of the returns or
signals are not zero. For example, if small-cap stocks have consistently
higher average return ranks, the fixed effects γsize

d,t will absorb this shift. Or,
if signals are not mean-zero within each group, the group-specific intercepts
help isolate the variation in returns explained by the signal.

2.3 Enforcing Positivity
Campbell and Thompson (2008) show that enforcing sign constraints on
return forecasts can improve predictive accuracy.2 Here, I apply a related
idea: if we believe a signal should yield non-negative ICs across all groups,
we can adjust the estimated group coefficients to enforce this economic prior.
Note carefully that this permits zero ICs, but not negative ICs.

Let β̂ denote the vector of estimated slope coefficients and Ω̃ the co-
variance matrix of the estimated slope coefficients.3 We seek an adjusted
coefficient vector β̃ that is statistically close to β̂ but ensures non-negative
implied ICs for all observed group combinations.

2Jagannathan and Ma (2003) demonstrate a similar effect in portfolio construction and risk
forecasting. Gu, Kelly, and Xiu (2020) and Chen, Pelger, and Zhu (2024) show that absence of
arbitrage constraints improve predictions in their models.

3I will discuss later that Ω̃ is a shrunk version of the covariance matrix Ω.
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The quadratic program

min
β̃

(β̃− β̂)′Ω̃−1(β̃− β̂) (6)

subject to

d′j β̃ ≥ 0 for all group combinations j, (7)

delivers such an adjusted estimate of the slope coefficients. The quadratic
form punishes large changes in precisely estimated coefficients.

Here, dj is a dummy vector corresponding to group combination j. In
the regression, each row of the design matrix has the form xitsit, where
xit contains the group dummies and intercept. To identify the constraint
vectors dj, we take the unique rows of xit (across all observations) and treat
their transposes as the set of dummy vectors dj.

This adjustment has at least two desirable properties. First, it enforces our
prior belief that the signal is non-negative everywhere. Second, it preserves
group coefficients with strong empirical support.

3 Estimation
The slope coefficients in equation (2) intentionally do not carry time sub-
scripts. While the IC and its components may change over time, the main
objective is to model persistent differences across groups of stocks. The
most reliable method for estimating these stable coefficients is in a panel
regression. We can stack many periods into a panel and then estimate the
slope coefficients.

To accommodate slow changes in the coefficients, we can certainly run
the panel regression for shorter or rolling windows. Alternatively, we can
give more weight to recent periods and less weight to distant periods.

In principle, we can apply any regularized regression framework in esti-
mating the model. The leading candidates employ different combinations of
ℓ1 and ℓ2 regularization. The ℓ1 regularization in the Tibshirani (1996) Lasso
regression strongly favors parsimony by setting some of the coefficients to
0. The ℓ2 regularization in the Hoerl and Kennard (1970) Ridge regression
shrinks estimates toward 0 but does not collapse the estimates there. The
combination of ℓ1 and ℓ2 regularization of the Zou and Hastie (2005) Elastic
Net regression allows for elements of both.

Shen and Xiu (2024) and Kozak, Nagel, and Santosh (2020) argue that ℓ2

regularization is better able to learn a large collection of weak signals than ℓ1
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regularization. This seems intuitive, but it is not clear that their logic applies
hear. In this setting, we have selected a signal. The main effort now is to
refine this signal. It is not clear that a large number of small refinements,
and the associated estimation noise, produce better forecasts than a small
number of larger adjustments. This is an empirical question and the answer
may depend on the signal.

The main challenge in estimating the regularized regression in equa-
tion (2) is to apply a key insight from shrinkage estimates: The amount of
shrinkage should depend on the precision of the empirical estimate. Since
the groups we defined are likely to contain different numbers of observa-
tions, the corresponding coefficient estimates are likely to have different
precisions. The uniform shrinkage in standard Lasso, Ridge, and Elastic Net
regressions is not a great match for this problem.

Hoerl and Kennard (1970) also defined a generalized Ridge regression
that allows for different penalties for each coefficient. If the groups don’t
overlap or the coefficient estimates are approximately uncorrelated, penalties
in proportion to the inverse of the squared standard errors are attractive.
When the groups overlap or the coefficient estimates are correlated, using
the full covariance matrix of the estimates as a shrinkage penalty becomes
attractive.

Similar, generalized versions of the Lasso and Elastic Net regressions are
feasible. Tibshirani and Taylor (2011) discuss generalized Lasso regressions.
Hellum, Pedersen, and Rønn-Nielsen (2024) discuss generalized Elastic
Net estimates in the context of global multi-factor models. I will focus
on generalized Ridge regression in the remainder. A key advantage of
this choice is that estimators have analytical solutions that do not require
the numerical searches associated with ℓ1 regularization or Monte Carlo
optimization common to many Bayesian estimators, as in Feng and He
(2022), for example.

Other, more flexible machine learning methods may also be suitable for
estimating the local ICs. The two key steps we have performed here are
to construct economically motivated prediction features Djs and to cross-
sectionally center the features in each group via fixed effects γjDj. A key
motivation for this approach rests on the assumption that the analyst’s
insight in choosing the groups is at least as helpful as generic machine
learning methods applied to less carefully curated features. This obviously
depends on the analyst’s insight.
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3.1 Generalized Ridge Regression

To estimate the coefficients, I extend the standard Ridge regression frame-
work to allow both a full covariance penalty matrix and a non-zero shrinkage
target β0. This generalization follows van Wieringen (2023), who show that
the solution corresponds to the posterior mean in a Gaussian Bayesian
model with prior mean and covariance.

For clarity, I will first apply this framework to the regression without
time-varying fixed effects, where we want to apply regularization to all
of the group-specific IC components. I will then extend the estimation
methodology to include the time-varying fixed effects, which we do not
want to regularize since they are meant to center the variables exactly.

In order to use mostly conventional regression symbols, let

• y denote the NT vector of excess returns rex
it+1

• Xβ denote the )NT × k signal matrix with columns for group-level
signal interactions

• β denote the k regression coefficients
• β0 denote the k-element shrinkage target
• Ω̃ denote the (shrunk) k× k covariance matrix of the coefficient esti-

mates
• λ > 0 be the overall Ridge penalty scalar

We set the shrinkage target

β0 =
[

ÎC, 0, · · · , 0
]′

. (8)

With this target, we shrink the intercept toward the overall IC and all group-
level deviations toward zero. Absent a theoretical prior for the overall IC,
we can run a first-stage panel regression without group effects to estimate
ÎC.

As stated in van Wieringen (2023), the generalized Ridge regression
objective is

β̂ = arg min
β

{∥∥y− Xββ
∥∥2

2 + λ (β− β0)′Ω̃−1(β− β0)
}

. (9)

The generalizations are twofold. First, we adopt a non-zero shrinkage
target. Second, we apply shrinkage based on the full inverse covariance of
the estimates, Ω̃−1, unlike the uniform scalar shrinkage in regular Ridge
regression.
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Conveniently, this generalized problem still has a closed-form solution

β̂ =
(

X ′
βXβ + λ Ω̃−1

)−1 (
X ′

βy + λ Ω̃−1β0

)
. (10)

This estimator shrinks noisy group effects toward zero while preserving
a conventional, pooled IC estimate for the intercept. It balances data-driven
estimation with prior beliefs about where the signal is effective. While the
zero priors for the group effects are natural, we can certainly use any other
values that we find reasonable for individual groups. If we believe the signal
does not work for a particular signal, we could use − ÎC as the prior for that
group effect, so that the net IC is zero for the group.

This formulation penalizes directions in parameter space according to
their estimated uncertainty: coefficients with high variance (i.e., low preci-
sion) receive stronger regularization. The use of Ω̃−1 allows the penalty to
incorporate correlations between group-level coefficient estimates but the
effect is moderated by the shrinkage in the covariance estimate.

Combined with hierarchical or overlapping group structures in Xβ, this
method produces interpretable and stable coefficient estimates that respect
both signal structure and estimation noise.

The estimate is equivalent to the Bayesian regression estimate in Chow
(1983) with a normally distributed prior. The prior has a mean equal to
β0 with variance proportional to Ω̃. The latter is a natural empirical Bayes
estimate of the prior variance.

The estimate is also equivalent to Bayesian forecast combinations or
Bayesian model averaging. Black and Litterman (1992) apply this idea to
asset allocation problems by combining investors’ expected returns with
market-implied expected returns. Hoeting, Madigan, Raftery, and Volinsky
(1999) describe Bayesian model averaging for more general forecasts. In
our application, each group overlaps with the entire investable universe
and possibly with other subsets of the universe. The refined estimates in
equation (10) average all applicable group-specific estimates with weights
governed by the precision of the estimates. In most other applications, the
estimates or predictions all cover the same universe. A main contribution
here is that this logic can be applied to many separate groups by carefully
considering the overlap among the groups.

In the absence of shrinkage, λ = 0, the estimates reduce to separately
estimated, group-specific ICs. Such a framework appears in Eric H. Sorensen
(2005), who estimate separate cross-sectional ICs across six overlapping
groups of stocks. Such an approach seems reasonable when the number
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of groups is small relative to the number of observations but introduces a
lot of estimation noise when there are many groups or some of the groups
contain a small number of stocks.

While we can enforce positivity of the overall ICs during estimation,
the associated inequality constraints prevent an analytical solution. The
constrained quadratic program remains convex, however, and can be solved
with standard numerical searches. Unless the postprocessing of the coeffi-
cients produces large coefficient changes, it is unlikely that postprocessing
the coefficients is very different from imposing the positive IC constraints
during estimation.4

3.2 Time-Varying Fixed Effects
We now extend the estimation framework to accommodate the time-varying
group-level fixed effects while preserving the structured shrinkage applied
to the group-dependent information coefficients (ICs). The idea is to estimate
a single regression that includes a block of slope coefficients β for the group-
dependent IC components, which are subject to regularization, and a block
of fixed-effect coefficients γ for the time-varying group-level fixed effects,
which are treated as unregularized intercept terms.

In this regression, let
• y be the stacked vector of cross-sectional return ranks, as before.
• Xβ be the design matrix of signal interacted with group indicators, as

before.
• Xγ be the NT×m design matrix of time-varying group dummies used

as fixed effects (e.g., size and earnings), with separate columns for
each group-time combination.

• X = [Xβ Xγ] be the full design matrix with dimension NT× (k + m).
• β be the vector of slope coefficients, as before.
• γ be the m-element vector of unpenalized fixed effect coefficients.

• b =
[

β′ γ′
]′

be the full coefficient vector with k + m elements.
For the coefficient estimates, we use a shrinkage target

b0 =
[

β′0 0′
]′

. (11)

The target β0 is defined in equation (8). The shrinkage target for the fixed
effects is not material because we don’t apply shrinkage to these coefficients.
As a result, any value is acceptable here.

4While some regularized regression tools can enforce positivity of the parameters, this is
not suitable here. The constraint that the IC should be positive everywhere permits negative
elements of β. We must permit negative elements in β so the regression can identify groups
with below-average ICs.
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We define the (k + m) × (k + m) regularization matrix Λ as a block-
diagonal matrix

Λ = λ

[
Ω̃−1 0

0 0

]
, (12)

where Ω̃ is the (shrunk) covariance matrix for the signal-related coefficients.
The fixed effects are unpenalized, as indicated by the zeros in the bottom-
right block of Λ.

The penalized least-squares objective for this regression is

b̂ = arg min
b

{
∥y− Xb∥2

2 + (b− b0)′Λ(b− b0)
}

. (13)

The solution has the same structure as before,

b̂ =
(
X ′X + Λ

)−1 (X ′y + Λb0
)

. (14)

This formulation preserves the Bayesian shrinkage interpretation for the
group-dependent signal effectiveness terms while incorporating exact cen-
tering of groups via time-varying fixed effects. By setting the regularization
weights for the fixed effects to zero, we ensure that these terms are treated
as conventional intercepts estimated without shrinkage.

Although we derived ?? analytically, like any regression estimator it
involves a matrix inverse, which requires numerical solutions. As for all
regression estimates, it is generally preferable to solve the normal equations
instead of inverting a large matrix. ?? provides additional details for practical
estimation of the panel regression.

Höchle, Schmid, and Zimmermann (2024) argue for the inclusion of
firm-specific effects in panel regressions without group structure. It is
mechanically straightforward to add firm-specific effects to the panel regres-
sions here. This is especially true if we treat the firm-specific effects in line
with the time-varying fixed effects and don’t apply shrinkage. However,
firm-specific fixed effects potentially introduce a large number of parame-
ters and we should carefully consider whether they are important after we
introduce group structure into the regressions. We will leave this for future
work.

3.3 Sparse Signals or Strong Priors
For signals with limited coverage, we may choose to zero out the signal for
an entire group. Under regularization, the corresponding group-specific
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coefficient estimate should be zero. In case this is not true, we should
post-process the coefficients to enforce this condition.

Similarly, we may have a strong prior that a signal does not work at all
for a particular group. We can zero out the signal for this group and, as
a result, the regularized group-specific coefficient. If stocks in this group
also appear in other groups, however, their overall IC will not be zero. This
is statistically sensible since information from other, overlapping groups
should shift our prior for the group in question.5

3.4 Testing Group Relevance
We can test whether a particular conditioning variable, firm size for example,
is relevant for prediction. The test asks whether we can reject the null
hypothesis that all slope coefficients associated with the dimension are
jointly zero. This can be done via a standard F-test for the appropriate
slope coefficients. If we can reject the null hypothesis, we can remove the
corresponding dummies from the regression.

3.5 Shrinkage of the Coefficient Covariance Matrix
To improve stability in the generalized Ridge procedure, we can also apply
shrinkage to the covariance matrix of the regression coefficient estimates.
Specifically, the Ledoit and Wolf (2004) shrinkage approach shrinks the
empirical covariance matrix Ω̂ toward a structured target matrix T. I set
the shrinkage target to the diagonal of the empirical covariance matrix, as
discussed in Schäfer and Strimmer (2005),

T = diag(Ω̂). (15)

The shrunk covariance matrix estimator is

Ω̃ = (1− δ)Ω̂ + δT, (16)

where δ ∈ [0, 1] is the shrinkage intensity.
To set δ, we can use a simple rule that balances the number of coefficients

k with the total sample size N, defined as

δ = min
(

1,
k
N

)
. (17)

5If we think our prior is unmovable, we can post-process the estimates to enforce the zero
IC. For overlapping groups, this involves an adjustment to all of the coefficients, similar to
positivity constraints for the overall ICs.
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This rule ensures more aggressive shrinkage when the number of coeffi-
cients is large relative to the number of observations. The resulting matrix
Ω̃ is used in the generalized Ridge optimization step to weight deviations
from the original coefficient estimates based on their statistical precision.

It seems sensible to use this shrunk estimate of the covariance matrix in
the post-processing step that ensures positive ICs.

3.6 Choice of Baseline Groups
To help regularization discover sparsity, we can pre-process the data to find
a “typical” group, which we then choose as the omitted category. If we omit
an unusual group, it is likely that the regression will estimate IC deviations
for all of the other groups, even though they may be very similar to each
other. Omitting a typical group makes it more likely that the deviations in
the other groups are immaterial.

Specifically, for each categorical group (e.g., sector), we compute group-
wise ICs β̂g by regressing ri,t+1 on si,t within group g. Let ng be the number
of observations in group g, and let N = ∑g ng be the total number of
observations. The pooled average IC is

β̂pooled =
1
N ∑

g
ng β̂g. (18)

We choose the reference group g0 to minimize |β̂g − β̂pooled|, so the omit-
ted group is the most representative, increasing the likelihood that small
deviations for other groups are shrunk to zero by regularization.6

3.7 Comparison with Traditional Factor Regressions
An alternative to our group-structured IC framework is to model the signal
as an alpha factor within a generalized Fama and MacBeth (1973) cross-
sectional factor regression framework. In this approach, signal portfolios
and returns are allowed to vary across observable stock groups by including
interactions between the signal and group dummies (e.g., signal × sector,
signal × size group). Eric H. Sorensen (2005) follow this approach without
applying shrinkage. Hellum, Pedersen, and Rønn-Nielsen (2024) apply
this idea to a global factor model, where the groups are countries. When
applying shrinkage to the estimates, they find that global components
dominate the country-specific factors.

This approach faces significant limitations, To account for heterogeneous
signal performance, one must include a large number of interaction terms

6Without regularization, the choice of the baseline groups has no effects on the model fit or
the model predictions.
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across combinations of sectors, industries, sizes, and other classifications.
This leads to an explosion in the number of parameters, especially when
many groups intersect. For example, if the factor regression contains 50
alpha factors and 100 groups, there are 50× 100 = 5, 000 group-specific
factor returns.7 Without regularization, this makes the model vulnerable
to overfitting and instability. This is especially true if the regressions are
run in pure cross-sections, period-by-period, as is common. Under this
method, standard estimation may not be feasible. Moreover, the associated
covariance matrix of factor returns is very challenging to estimate. In the
case of 50 alpha factors across 100 groups, the 5,000 factor returns give rise
to more than 12 million covariance parameters.

When we apply regularization to such cross-sectional regressions, they
can produce inconsistent patterns of sparsity over time, especially under
ℓ1 regularization. When regularization sets a group-specific coefficient
to zero in a given period, it is unclear how to treat the associated factor
return: should it be recorded as zero, or as missing? Both choices introduce
distortions, either biasing the return series or complicating downstream
covariance estimation and signal combination.

In contrast, our proposed framework models cross-sectional signal ef-
fectiveness directly using a structured regression of ranked future returns
on ranked signal values, where the slope varies additively by group. We
apply regularization to a single, time-pooled model, yielding consistent
and interpretable shrinkage across groups. This avoids the need to define
and maintain thousands of group-level interaction terms and eliminates
ambiguity about missing or zero factor returns.

Importantly, our model does not require explicit interaction between
every signal and every group combination. Instead, deviations from a global
baseline IC are regularized toward zero in a unified regression. This natu-
rally accommodates sparse group-level structure without the combinatorial
burden of modeling every possible cross-term.

The contextual adjustments to signals can use different contexts, or
groups, for different signals. For example, we can allow the IC to vary across
liquidity groups for one signal and across measures of analyst attention
for another signal. These differences are isolated to each signal and do not
complicate the factor model.

Thus, while the traditional factor regression approach may seem famil-
iar, it lacks a coherent and scalable method for incorporating persistent

7Cong, Feng, He, and Li (2023) use Bayesian shrinkage to collapse some of these groups
based on the estimated differences in the models for each group. This can reduce the number
of separate groups when they are not empirically important.
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group heterogeneity in signal effectiveness. Our structured IC regression
addresses this problem directly, thereby preserving interpretability, enabling
regularization, and ensuring consistency across time.

3.8 Historical Simulations
To avoid look-ahead bias in historical simulations, it is vital that we estimate
this model on past data before making forecasts for future returns.

It would be a mistake to use the full history of the signal to estimate
the parameters of the group-structured regression before running historical
simulations. If we do this, we give additional weight to groups where
the signal has done especially well. Of course, this will improve historical
simulations. Unfortunately, it is unrealistic.

Fortunately, no such confusion can arise in making live return forecasts,
where we are free to use all historical data in order to estimate the coeffi-
cients.

4 Portfolio Construction
From the contextual signal, we can derive contextual alphas, expected
returns, and then use them in portfolio construction. Although this process
is straightforward, it is helpful to discuss some details of this process and
highlight some consequences of the contextual alphas.

4.1 Expected Returns from Estimated ICs
From the regression above, after enforcing positive ICs, the estimated slope
for stock i is

β̃i = β̃0 + ∑
g ̸=g0

β̃sec
g Dsec

ig + ∑
h ̸=hg(i)

β̃ind
h Dind

ih

+ ∑
d ̸=d0

β̃size
d Dsize

id + ∑
e ̸=e0

β̃event
e Devent

ie . (19)

Then, the expected returns are

Etri,t+1 = β̃isi,t. (20)

Although the ICs are estimated using ranks, expected returns for portfolio
optimization are derived by scaling signal values by group-specific ICs,
translating rank-based effectiveness into return forecasts.

The expected returns here intentionally omit the time-series average re-
turns from the fixed effects. The role of the fixed effects is to identify the
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correct slope coefficients for the signal. If we believe that there are pre-
dictable average return differences across the groups, those can be captured
in a separate signal.

4.2 Mapping Coefficients to Stock-Level ICs
To map each signal to the corresponding expected return, it is helpful to
expand the group-wise ICs to security-wise ICs.

Let β be the k-element vector of estimated group-structured coefficients,
and let st be the n-element vector of signal values for n stocks at time t.8

Define an n× k matrix Z, where each row corresponds to a stock and
each column corresponds to a coefficient in β. The matrix Z encodes the
group membership of each stock

Zij =

1 if stock i belongs to group j

0 otherwise.
(21)

Each row Zi contains the dummy variables (including β0) associated with
stock i, and allows us to write the IC for stock i as

ρi = Ziβ. (22)

This yields the stock-specific scale factors, or information coefficients,

ρ = Zβ. (23)

Then, the expected returns are given by the elementwise product

Etrt+1 = ρ⊙ st (24)

= (Zβ)⊙ st. (25)

This expression shows how the group-structured regression yields heteroge-
neous expected returns by applying different ICs to different stocks, based
on their characteristics.

The map shows that the expected returns are not a rescaled version of
the original signal. We apply different scale factors to different groups of
stocks, depending on the group-wise efficacy of the signal. This can easily
change the overall rank of the signal. For example, stock 1 can have a raw
signal score s1 = 0.4 and stock 2 can have a raw signal score s2 = 0.6. If
β̃1 = 0.75 and β̃2 = 0.25, the expected return for stock 1 is higher than for

8Although n may vary over time, we suppress t subscripts on the symbols affected by this:
n, Z, and ρ.
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stock 2, 0.30 versus 0.15, even though the raw signals implied the opposite
order.

4.3 Optimal Portfolio: Single Signal
Let α = ρ⊙ s be the vector of expected returns from the signal, defined
in equation (24), and Σ the residual covariance matrix from a factor model
excluding the signal. Let B be the factor loading matrix for a collection of
risk factors.

We solve the mean-variance portfolio optimization problem

max
w

w′α− 1
2

λw′Σw (26)

s.t. w′B = 0. (27)

The analytical solution for the optimal portfolio weights is

ŵ =
1
λ

(
Σ−1 − Σ−1B

(
B′Σ−1B

)−1
B′Σ−1

)
α (28)

=
1
λ

PΣ−1α, (29)

with

P = I − Σ−1B
(

B′Σ−1B
)−1

B′. (30)

This expression projects the unconstrained optimal portfolio onto the sub-
space orthogonal to the risk factors, thereby ensuring factor neutrality. The
matrix P is the appropriate projection matrix. This yields a signal-exploiting
portfolio that remains neutral to risk factors where signal strength varies
across stock groups.

Portfolios based on the contextual alphas, α = ρ⊙ s, deviate from portfo-
lios based on the original signals, s, in two ways. First, the contextual alphas
have larger scale in groups where the alphas are more effective. The cor-
responding portfolios have larger gross exposure in those groups than the
portfolios based on s. Second, the contextual alphas can change the relative
ranking of the stocks, as in the example above. Therefore, portfolios based
on α have different security rankings than portfolios based on s. Because
we require ICs to be positive everywhere, however, the α portfolio is likely
to have material exposure to the original signal s, ŵ′s > 0.

Portfolios based on contextual alphas also differ from portfolios that are
constructed separately in each group. For example, we might construct
separate portfolios in each sector. Portfolio construction with contextual
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alphas tunes alphas by groups but uses the entire investable universe for
hedging purposes. This can materially reduce portfolio risk in the presence
of pervasive risk factors in Σ or B that cannot be hedged well within subsets
of the investable universe.

4.4 Optimal Portfolio: Multiple Signals
We can easily define the weighted average of several alphas as a composite
alpha. This composite alpha can then be used in portfolio optimization, as
for the single signal in the portfolio above.

The main challenge is choosing good weights across signals that may
have material correlation with each other. Solutions to this problem can
be improved by including the individual alphas in a multi-factor model in
order to derive the pure alphas. The pure alpha exposures are orthogonal
to each other, which can simplify the allocation choices.

5 Multi-Factor Models with Contextual Signals
Once contextualized signals are mapped to expected returns, as in equa-
tion (24), they can be treated like any other conventional signal or factor.
Conventional signals are applied uniformly to the entire investable universe.
The expected returns in equation (24) apply uniformly to all stocks, even
though the underlying signals st do not.

To integrate multiple signals, we can run group-aware regressions for
each signal, as described above. We can use the local ICs to form expected
returns. These expected returns are suitable for inclusion in a fundamental
factor model with both risk and alpha factors. For this factor model, we can
run cross-sectional regressions of stock returns on risk and alpha factors to
obtain pure factor returns. Finally, we can estimate expected returns and
covariances for the factor returns.

The tuned, contextual alphas do not require additional special treatment
prior to inclusion in a multi-factor model. However, there are some common
pre-processing steps we might apply to raw signals. While some of these do
not distort the contextual alphas, others do and we should be be cautious in
their application to the contextual alphas.

We commonly standardize factor scores before including them in the
factor regressions. Standardizing the overall expected return is a simple
rescaling that does not affect the relative scale or ranking or the alphas. As
a result, we can apply overall standardization without undoing any of the
contextual adjustments.

In some cases, we standardize factor scores within groups, such as
industries. This can partially undo the effects of the contextual signal
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adjustments and should be done with extreme care. In fact, it is probably
best avoided.

Some factor regressions rank factor scores before standardizing them.
Ranking, whether within groups or in the full estimation universe, at least
partially removes the contextual scale adjustments and is best avoided. The
main motivation for focusing on ranks is that they are highly robust to
outliers. If we start with ranked signals si,t there should be no urgent need
to rank the expected returns. The original ranking adjusted outliers.

As for conventional factors, the pure factor portfolios corresponding to
the tuned alpha signals have different weights and exposures than the raw
factors. This is the result of the mutual orthogonalization performed by the
regression. If the raw factor exposures are not highly correlated with the
other factors, the changes may be minor.

As for conventional factors, we obtain a single factor return per period,
even though the contextual signal was tuned to different groups of stocks.
This stands in stark contrast to models that include separate factors for
different groups of stocks in the overall factor model.

Unlike traditional dummy-interacted alpha factors, contextual signals
remain parsimonious and interpretable, avoiding proliferation of factors
and factor returns.

6 Conclusion
This paper develops a contextual modeling framework for signal effective-
ness by allowing the information coefficient (IC) of a trading signal to vary
systematically across groups of stocks defined by categorical characteristics
such as sector, industry, size, and event time. By expressing the IC as a
group-structured linear function, the model captures persistent heterogene-
ity in signal performance across the investable universe.

The core insight is to interpret the slope in a rank-based regression
of future returns on the signal as local IC components that may differ
by group. This structured regression permits granular decomposition of
signal effectiveness and yields interpretable group-specific contributions to
predictive power.

To ensure stable estimation, the model applies generalized Ridge regular-
ization to the group-level IC components, guided by a shrinkage penalty
matrix based on coefficient estimate precision. A post-estimation adjust-
ment can enforce non-negative ICs across all groups to further stabilize the
predictions.
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The estimation framework accommodates group-specific fixed effects,
which are not regularized and act to center returns and signals within
group-period combinations. The resulting model is a generalized Bayesian
Ridge regression with informative priors on the IC components and flat
priors on the fixed effects.

Expected return forecasts constructed from the estimated ICs are readily
usable in both single-signal and multi-signal portfolio construction. These
forecasts reflect both the signal value and the context in which it is observed.
The resulting portfolios amplify the signal where it is most predictive and
mute it where it is less reliable, thereby leading to improved risk allocation
and more consistent portfolio performance.

Overall, the approach offers a coherent and practically implementable
method for refining trading signals for improved portfolio performance in
the presence of cross-sectional heterogeneity. The approach combines statis-
tical rigor with economic intuition and economically motivated constraints
to derive interpretable signals that are flexible but more parsimonious than
competing approaches.
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A Estimation Details
This appendix discusses two potential estimation issues and their solutions.
First, although the generalized Ridge estimator in the main text is a conven-
tional regression estimator, it may involve the inverse of a very large matrix
and can become computationally taxing. Second, the covariance matrix of
the slope estimates may not be clearly defined if some of the groups are
always empty.

A.1 Coefficient Estimation
The generalized Ridge regression for a panel with m groups and T periods
includes mT time-varying fixed effects. For example, for 100 groups and
1,000 periods, there are 100,000 fixed effects. These coefficients are nuisance
parameters in the sense that we generally don’t care about their values or
standard errors. But their presence in the design matrix can make direct
numerical computation of equation (14) inefficient or even infeasible.

One approach is to solve the associated normal equations:

(
X ′X + Λ

)
b̂ = X ′y + Λb0. (31)

This system is sparse and can be handled efficiently using sparse matrix
libraries.

An alternative and often more efficient approach is to treat the time-
varying fixed effects as nuisance parameters and remove their influence
via demeaning. That is, we subtract the group-wise means from both the
dependent and independent variables in each period, which guarantees that
the corresponding fixed effects are zero.

If the groups are disjoint, such demeaning can be done group-by-group
in a straightforward manner. However, if the groups overlap, sequential
demeaning is invalid because adjusting for a later group can undo the
mean-centering of earlier groups. Instead, we must simultaneously solve
for the group means in each period.

Let D ≡ Xγ denote the group dummy matrix, with n rows (one per
observation) and m columns (one per group-time fixed effect).9 The matrix
D is very sparse, with a small number of nonzero entries per row.

For each column variable z ∈ {y, Xβ,1, . . . , Xβ,k}, we compute the m-
dimensional group mean vector γz by solving the sparse linear system

9The matrix D is not related to the vectors dj we defined in the main text. They represent
entirely different dummy variables.
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D′D γz = D′z. (32)

The demeaned column is then

z̃ = z− Dγz. (33)

Because the matrix D′D is the same for all right-hand sides, we can
factor it once using sparse Cholesky or LDL⊤ decomposition and reuse the
factorization for all variables. Alternatively, we can solve equation (32) using
an iterative sparse least-squares solver.10

This approach yields exact within-group residuals even when the groups
overlap, and is computationally efficient for large-scale problems due to the
sparsity of the system.

Gaure (2013) recommends alternating projections to solve systems like
equation (32). This method is extremely fast when group overlaps are
limited. For heavily overlapping groups, direct solution of the sparse linear
system is often faster.

Compared to solving the full regression problem, the speedup comes
from two sources. First, demeaning amounts to solving a smaller system of
equations. The regression solves a (k + m)× (k + m) system of equations.
Here, we solve two smaller systems: k × k and m× m. The dimensional
reduction of 2km can be very meaningful. Second, the system of equations
for the dummy equations is highly sparse and can be solved more efficiently
than a dense system of similar size.

A.2 Covariance Estimation
Since the covariance matrix of the slope coefficients is used in shrinkage and
portfolio construction, we must ensure it is properly estimated. A primary
concern is residual correlation, either over time or within groups.

We estimate the covariance matrix of the slope coefficients by first running
a conventional linear regression without shrinkage, possibly after demeaning
the data to account for time-varying fixed effects. The residuals from this
regression are then used to compute the usual OLS covariance estimate

Ω = σ2
ε (X ′

βXβ)−1, (34)

where σ2
ε is the residual variance and Xβ is the matrix of right-hand-side

variables corresponding to the shrinkage-eligible slope coefficients. As the
10In Python, routines such as cg or minres in scipy.sparse.linalg implement these methods.
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main text explains, it can be useful to apply shrinkage to this covariance
before using it in the generalized Ridge regression.

Because group-wise means are removed each period, serial correlation
in group effects is eliminated. For residuals of liquid asset returns, serial
correlation is typically minimal. If it exists, it is likely absorbed by the signal
and thus not present in the residuals. However, correlation of residuals
within groups may still occur. To account for such structure, one can
estimate the covariance matrix using multi-way clustered standard errors as
proposed by Thompson (2011) and Cameron, Gelbach, and Miller (2011).

Another issue arises when some groups are always empty: No stocks
ever appear in them due to data availability or screening. In such cases, one
can handle the problem automatically during estimation. Columns of the
design matrix corresponding to empty groups will consist entirely of zeros
or missing values. These columns can be masked during estimation. For
the affected slope coefficients, it is reasonable to assign a slope estimated of
0, a variance equal to a large number, and covariances equal to 0. This is
consistent with Bayesian shrinkage and does not affect estimation elsewhere.

Finally, when using demeaning rather than explicit fixed effects, we must
adjust the degrees of freedom in the covariance estimation. A full regression
recognizes that m fixed effects are estimated and uses NT −m− k degrees
of freedom. If we demean and then regress, a naive estimate might assume
NT − k degrees of freedom. To correct for this, we scale the covariance
matrix by (NT− k)(NT−m− k). This adjustment ensures consistency with
full fixed-effect estimation.
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